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Outline 

�• Homework Questions? Structure of an 
optimization code (EXPAND) 

�• Survey 
�• 2.3 Direct Linear Algebra �– Factorization 
�• 2.4 Sparsity 
�• 3.1 Failure of vanilla Newton 
�• 3.2 Line Search Methods 
�• 3.3 Dealing with Indefinite Matrices 
�• 3.4 Quasi-Newton Methods 



Some thoughts about coding 

1. Think ahead of time what functionality your 
code will have, and define the interface 
properly 

2. If portions of code are similar, try to define a 
function and �“refactorize�” (e.g the 3 different 
iterations). 

3. Document your code.  
4. Do not write long function files; they are 

impossible to debug (unless very experienced).   



Example Encapsulation 

[xout,iteratesGradNorms]=newtonLikeMethod(@fenton_wrap,[3 4]',1,1e-12,200) 



2.3 SOLVING SYSTEMS OF 
LINEAR EQUATIONS 



2.3.1 DIRECT METHODS: THE 
ESSENTIALS 



�• Lower Triangular Matrix 

�• Upper Triangular Matrix 



�• LU decomposition / factorization 
     [ A ] { x } = [ L ] [ U ] { x } = { b } 
�• Forward substitution  
         [ L ] { d } = { b } 
�• Back substitution 
         [ U ] { x } = { d } 
�• Q:Why might I do this instead of 

Gaussian elimination?  



Complexity of LU Decomposition 
to solve Ax=b: 

�– decompose A into LU    -- cost 
2n3/3 flops 

�– solve Ly=b for y by forw. substitution  -- cost n2 
flops 

�– solve Ux=y for x by back substitution  -- cost n2 
flops 

slower alternative: 
�– compute A-1     -- cost 2n3 flops 
�– multiply x=A-1b     -- cost 2n2 

flops 
this costs about 3 times as much as LU 26 Sept. 2000 15-859B - Introduction to Scientific 

Computing 
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�• If [A] is symmetric and positive definite, it is 
convenient to use Cholesky decomposition. 

[A] = [L][L]T= [U]T[U] 

�• No pivoting or scaling needed if [A] is 
symmetric and positive definite (all 
eigenvalues are positive) 

�• If [A] is not positive definite, the procedure 
may encounter the square root of a negative 
number 

�• Complexity is ½ that of LU (due to symmetry 
exploitation) 



�• [A] = [U]T[U]  
�• Recurrence relations 



�• Still need pivoting in LU decomposition 
(why?) 

�• Messes up order of [L] 

�• What to do? 

�• Need to pivot both [L] and a permutation 
matrix [P] 

�• Initialize [P] as identity matrix and pivot 
when [A] is pivoted.  Also pivot [L] 



�• Permutation matrix [ P ] 
    - permutation of identity matrix [ I ] 
�• Permutation matrix performs �“bookkeeping�” 

associated with the row exchanges 
�• Permuted matrix [ P ] [ A ] 
�• LU factorization of the permuted matrix 
              [ P ] [ A ] = [ L ] [ U ] 
�• Solution  
              [ L ] [ U ] {x} = [ P ] {b} 



LU-factorization for real symmetric Indefinite matrix A 
(constrained optimization has saddle points)   

factorization 

factorization 

where and 

Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E 
after pivoting? Of what size?  

2) Why not LU-decomposition?  



History of LDL�’ decomposition: 1x1, 2x2 pivoting 

�• diagonal pivoting method with complete pivoting:  
Bunch-Parlett, �“Direct methods fro solving symmetric indefinite 
systems of linear equations,�” SIAM J. Numer. Anal., v. 8, 1971, 
pp. 639-655 

�• diagonal pivoting method with partial pivoting:  
Bunch-Kaufman, �“Some Stable Methods for Calculating Inertia and 
Solving Symmetric Linear Systems,�” Mathematics of 
Computation, volume 31, number 137, January 1977, page 
163-179 

�• DEMOS  



2.3.1 DIRECT METHODS: 
EXTRA DETAILS 



Gaussian Elimination (GE) 
�• Add multiples of each row to later rows to make A upper triangular 
�• Solve resulting triangular system Ux = c by substitution 
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�… for each column i 
�… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    �… for each row j below row i 
    for j = i+1 to n 
         �… add a multiple of row i to row j 
         tmp = A(j,i); 
         for k = i to n 
               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 
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Refine GE   (1/5) 
�• Initial Version 

Remove computation of constant tmp/A(i,i) 
from inner loop.  

�… for each column i 
�… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    �… for each row j below row i 
    for j = i+1 to n 
         �… add a multiple of row i to row j 
         tmp = A(j,i); 
         for k = i to n 
               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 

m 

i 

j 



Refine GE  (2/5) 
�• Last version 

�• Don�’t compute what we already know:                    
zeros below diagonal in column i 
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for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 

Do not compute zeros 

m 

i 

j 



Refine GE Algorithm (3/5) 
�• Last version 

�• Store multipliers m below diagonal in zeroed 
entries for later use 
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for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store m here 

m 

i 

j 



Refine GE Algorithm (4/5) 
�• Last version 
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for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

�• Split Loop 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store all m�’s here before 
updating rest of matrix 

i 

j 



Refine GE Algorithm (5/5) 
�• Last version 
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for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) * ( 1 / A(i,i) ) 
             �… BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  
              - A(i+1:n , i) * A(i , i+1:n) 
              �… BLAS 2 (rank-1 update) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 



What GE really computes 

�• Call the strictly lower triangular matrix of 
multipliers M, and let L = I+M 

�• Call the upper triangle of the final matrix U 
�• Lemma (LU Factorization): If the above 

algorithm terminates (does not divide by zero) 
then A = L*U 
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for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)     �… BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)   �…  BLAS 2 (rank-1 update) 



What GE really computes 

�• Solving A*x=b using GE 
�– Factorize A = L*U using GE                   (cost = 

2/3 n3 flops) 
�– Solve L*y = b for y, using substitution (cost = n2 

flops) 
�– Solve U*x = y for x, using substitution (cost = n2 

flops) 

�• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as 
desired Summer School Lecture 4 24 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)     �… BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)   �…  BLAS 2 (rank-1 update) 



�• Once [L] is formed, we can use forward 
substitution instead of forward elimination for 
different {b}�’s 

Very efficient for 
large matrices ! 



Identical to 
Gauss 

elimination  



Example: 





�• Forward-substitution 

�• Back-substitution (identical to Gauss 
elimination) 





2.4 COMPLEXITY OF LINEAR 
ALGEBRA; SPARSITY 



Complexity of LU Decomposition 
to solve Ax=b: 

�– decompose A into LU    -- cost 
2n3/3 flops 

�– solve Ly=b for y by forw. substitution  -- cost n2 
flops 

�– solve Ux=y for x by back substitution  -- cost n2 
flops 

slower alternative: 
�– compute A-1     -- cost 2n3 flops 
�– multiply x=A-1b     -- cost 2n2 

flops 
this costs about 3 times as much as LU 26 Sept. 2000 15-859B - Introduction to Scientific 

Computing 
32 



Complexity of linear algebra 

lesson: 
�– if you see A-1 in a formula, read it as �“solve a 

system�”, not �“invert a matrix�” 

Cholesky factorization  -- cost n3/3 flops 

LDL�’  factorization  -- cost n3/3 flops 

Q: What is the cost of Cramer�’s rule (roughly)? 26 Sept. 2000 15-859B - Introduction to Scientific 
Computing 

33 



Sparse Linear Algebra 

�• Suppose you are applying matrix-vector multiply 
and the matrix has lots of zero elements 
�– Computation cost?  Space requirements? 

�• General sparse matrix representation concepts 
�– Primarily only represent the nonzero data values 

(nnz) 
�– Auxiliary data structures describe placement of 

nonzeros in �“dense matrix�”  

�• And *MAYBE* LU or Cholesky can be done in 
O(nnz), so not as bad as (O(n^3)); since very 
oftentimes nnz=O(n)  



Sparse Linear Algebra 

�• Because of its phenomenal computational and 
storage savings potential, sparse linear algebra is 
a huge research topic.  

�• VERY difficult to develop.  
�• Matlab implements sparse linear algebra based 

on i,j,s format.  
�• DEMO 
�• Conclusion: Maybe I can SCALE well �… Solve 

O(10^12) problems in O(10^12).  
35



SUMMARY SECTION 2 

�• The heaviest components of numerical software 
are Numerical differentiation (AD/DIVDIFF) 
and linear algebra.  

�•  Factorization is always preferable to direct 
(Gaussian) elimination.  

�• Keeping track of sparsity in linear algebra can 
enormously improve performance. 



Section 3: Line Search Methods 
Mihai Anitescu STAT 310 
Reference: Chapter 3 in Nocedal and 
Wright.  



3.1 FAILURE OF NEWTON 
METHODS 



Problem definition 

  min f (x)

  f : Rn R - continuously differentiable  
- gradient is available 
-Hessian is unavailable  

Necessary optimality conditions:   f (x*) = 0

Sufficient optimality conditions: 
   

2 f (x*) 0



DEMO 

�• Algorithm: Newton.  
�• Note: not only does the algorithm not converge, 

the function values go to infinity.  
�• So we should have known ahead of time we 

should have done something else earlier.  



Ways of enforcing that thinks do not 
blow up or wander 

�• 1. Line-search methods.  
�– Make a �“guess�” of a good direction.  
�– Make good progress along that direction. At least 

know you will decrease f. 

�• 2. Trust region model.  
�– Create a quadratic model of the function.  
�– Define a region where we �“believe�”�—�”trust�” the 

model and find a �“good�” point in that �“region�”.  
�–  If at that point the model is far from f, less trust�—

smaller region, if not, more �–larger region.   



3.2 LINE SEARCH METHODS 



3.2.1 LINE SEARCH METHODS: 
ESSENTIALS 



Line Search Methods Idea: 

�• At the current point     find a �“Newton-like�” 
direction  

�• Along that direction       do 1-dimensional 
minimization (simpler than over whole space)  

�• Because the line search always decreases f, we 
will have an accumulation point (cannot diverge 
if bounded below) �– unlike Newton proper 

xk
dk

dk

xk+1 argmin f (xk + dk )



g (  )  =   f  ( x  k  +   p k ) for    f  ( x  k ) ' p k   <  0 

Descent Principle 
�• Descent Principle: Carry Out a one-Dimensional 

Search Along a Line where I will decrease the 
function. 

�• If this happens, there exists an alpha (why? ) 
such that.  

�• So I will keep making progress.  
�• Typical choice (why)? 
�• Newton may need to be modified (why?)  

f xk + pk( ) < f xk( )

 Bk pk = f (xk ); Bk 0



Line Search-Armijo 

  f (xk ) f (xk +
m

k dk ) m
k f (xk )T dk

 (0,1)  (0,1 / 2)

g(0)+  g�’( ) 

g(0)+ c1 g�’( ) 

�•I cannot accept just about ANY decrease, for I may NEVER 
converge (why , example of spurious convergence).  
�• IDEA: Accept only decreases PROPORTIONAL TO THE 
SQUARE OF GRADIENT. Then I have to converge (since process 
stops only when gradient is 0). 
�• Example: Armijo Rule. It uses the concept of BACKTRACKING. 



Some Theory 

Newton is accepted by LS 

Global Convergence:  

Fast Convergence:  



Extensions 

�• Line Search Refinements:  
�– Use interpolation  
�– Wolfe and Goldshtein rule 

�• Other optimization approaches 
�– Steepest descent,  
�– CG �…. 



3.2.2 LINE SEARCH METHODS: 
EXTRAS. 



3.2.2.1 LINE SEARCH 
METHODS: USING 
INTERPOLATION IN LINE 
SEARCH 



  Quadratic Interpolation 
Approximate    g( ) with h(0) 

 h(0)=g(0),  h�’(0) =g�’(0), g( 0) 

   g( 0) 

  1 

 g( 0)  g( 0) 0g' ( )       2 
 2 



Quadratic Interpolation 
Potential step 1 =   g'( ) 02 

2(g( 0)  g(0) 0g'( )) 

   g( 0) 

 1 



b  =   2(      ) 03    1   g( 0)  g(0)  g'(0) 0 

2 

 2 
0     1          1              0 

 Cubic Interpolation 
h( ) = a  3 +b  2 + g'(0)+ g(0) 

a                   1               0 12 g( 1 )  g(0)  g'(0) 1 
 3                                                

b+    b2 3ag'(0) 
 3a 2 =

Cubic Interpolation 



3.2.2.2 LINE SEARCH 
METHODS: OTHER LINE 
SEARCH PRINCIPLES 



Unconstrained optimization methods 

  xk+1 = xk + k dk

  k :   dk :Step length Search direction 

1) Line search 

2) Trust-Region algorithms 

Quadratic approximation 

Influences 



Step length computation: 

1) Armijo rule: 

2) Goldstein rule: 

  1 k gk
T dk f (xk + k dk ) f (xk ) 2 k gk

T dk

 0 < 2 <
1
2 < 1 <1

  f (xk ) f (xk +
m

k dk ) m
k f (xk )T dk

 (0,1)  (0,1 / 2)

  k = ( f (xk )T dk ) / dk

2



3) Wolfe conditions: 

  f (xk + k dk ) f (xk ) k gk
T dk

  f (xk + k dk )T dk gk
T dk

 0 < <1

Implementations: 

Shanno (1978) 

Moré - Thuente (1992-1994) 



3.2.2.3 LINE SEARCH 
METHODS: TAXONOMY OF 
METHODS 



Methods for Unconstrained Optimization 

1) Steepest descent (Cauchy, 1847) 

  dk = f (xk )

  dk =
2 f (xk ) 1 f (xk )

2) Newton  

3) Quasi-Newton (Broyden, 1965; and many others) 

  dk = Hk f (xk )



4) Conjugate Gradient Methods (1952) 

  dk+1 = gk+1 + ksk

  sk = xk+1 xk

  dk
2 f (xk ) 1 gk   

rk = 2 f (xk )dk + gk

 k
 is known as the conjugate gradient parameter  

5) Truncated Newton method (Dembo, et al, 1982) 

6) Trust Region methods  



7) Conic model method  (Davidon, 1980) 

  
c(d) = f (xk ) +

gk
T d

1+ bT d
+ 1

2
dT Ak d

(1+ bT d)2

  
q(d) = f (xk ) + gk

T d + 1
2

dT Bk d

8) Tensorial methods  (Schnabel & Frank, 1984) 

  
mT (xc + d) = f (xc ) + f (xc ) d + 1

2
2 f (xc ) d 2

  
+ 1

6
Tc d 3 + 1

24
Vc d 4



10) Direct searching methods 

9) Methods based on systems of Differential Equations  
    Gradient flow Method  (Courant, 1942)  

  
dx
dt

= 2 f (x) 1 f (x)

  x(0) = x0

Hooke-Jevees (form searching) (1961) 
Powell (conjugate directions) (1964) 
Rosenbrock (coordinate system rotation)(1960) 
Nelder-Mead (rolling the simplex) (1965) 
Powell �–UOBYQA (quadratic approximation) (1994-2000) 

N. Andrei, Critica Retiunii Algoritmilor de Optimizare fara Restrictii 
Editura Academiei Romane, 2008. 


